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It is well known that the direct-space asymmetric unit definitions found in the

International Tables for Crystallography, Volume A, are inexact at the borders.

Face- and edge-specific sub-conditions have to be added to remove parts

redundant under symmetry. This paper introduces a concise geometric notation

for asymmetric unit conditions. The notation is the foundation for a reference

table of exact direct-space asymmetric unit definitions for the 230 crystal-

lographic space-group types. The change-of-basis transformation law for the

conditions is derived, which allows the information from the reference table to

be used for any space-group setting. We also show how the vertices of an

asymmetric unit can easily be computed from the information in the reference

table.

1. Introduction

In the presence of symmetry, the concept of an asymmetric

unit (also known as fundamental region in mathematics) is

important for many practical applications, for example to

avoid time-consuming redundant calculations or to suppress

redundant output. International Tables for Crystallography,

Volume A (ITA) (Hahn, 2005) defines the direct-space

asymmetric unit of a crystallographic space group (DAU) as

‘the smallest part of space from which, by application of all

symmetry operations of the space group, the whole of space is

filled exactly’ (ITA x2.2.8). This paper focuses on definitions of

exact DAUs. These are refinements of the ITA conditions,

which are sets of inequalities for each space group that must

be true simultaneously for a point with fractional coordinates

x; y; z to be inside the DAU, for example 0 � x � 1;

0 � y � 1; 0 � z � 1=2 for space group P2. The ITA condi-

tions define the DAU shapes but are inexact for the borders.

For example, the ITA P2 conditions are true for all eight

vertices of the DAU parallelepiped, but according to the

definition in ITA x2.2.8 only two of these points can be in the

exact asymmetric unit. To make a DAU exact, sub-conditions

have to be added to the shape conditions, specific to faces and

edges. Koch & Fischer (1974) published exact DAU definitions

for the cubic space groups. In Grosse-Kunstleve et al. (2003)

we presented an overview of an online gallery of exact

DAUs for all 230 crystallographic space groups. Chapter 1.5 of

Shmueli (2008) and the KVEC server at http://www.cryst.

ehu.es also offer exact DAU definitions, but the DAU shapes

are partially incompatible with those of ITA. In this paper we

introduce a concise geometric notation which is the founda-

tion for a reference table of exact DAUs, using the same

definitions as in our previous work, which are fully compatible

with those of ITA.

2. Geometric cut notation and expressions

This section defines a concise geometric notation that has

greatly accelerated the progress of this work. As will become

apparent below, the notation enables a systematic, intuitive

labelling of planes that define an exact DAU.

Similar to the ITA approach, a DAU shape is defined by a

list of inequalities. We work with the general form

hxþ kyþ lzþ c � 0 ð1Þ
or

hxþ kyþ lzþ c> 0: ð2Þ
h; k; l are Miller indices that define the normal vector of a

plane, c is a scalar constant which determines the distance of

the plane from the origin, and x; y; z are fractional coordinates

in direct space. We call both equations a cut since the

geometric interpretation is a division of direct space into two

halves. The left-hand side of the equations is exactly zero for

points inside the cut plane. The inequalities are defined to be

true for points x; y; z inside the DAU. Equation (1) is used if a

region of the cut plane is inside the DAU and equation (2) is

used if the entire plane is outside. To facilitate a concise

representation of DAU definitions, we introduce a cut nota-

tion. The general form is
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cutððh; k; lÞ; cÞ ð3Þ
or

þcutððh; k; lÞ; cÞ ð4Þ
corresponding to equations (1) and (2), respectively. To obtain

intuitive labels for DAU cut planes, we use the geometric

cut symbols defined in Table 1, for example tx0 ¼
cutðð�2; 1; 1Þ; 0Þ. Relationships between cuts can be forma-

lized via cut expressions using unary and binary operators

defined as follows:

�cutððh; k; lÞ; cÞ ¼def
cutðð�h;�k;�lÞ;�cÞ ð5Þ

� cutððh; k; lÞ; cÞ ¼def
cutðð�h;�k;�lÞ; cÞ ð6Þ

cutððh; k; lÞ; cÞ � s ¼def
cutððh; k; lÞ; c � sÞ ð7Þ

cutððh; k; lÞ; cÞ=s ¼def
cutððh; k; lÞ; c=sÞ: ð8Þ

The variable s is a scalar value. Each of the operators defined

in equations (5)–(8) has a simple geometric interpretation.

The ‘�’ operator defined by equation (5) corresponds to a

reversal of ‘inside’ and ‘outside’. The ‘�’ operator defined by

equation (6) acts like a centre of inversion at the origin; see

Figs. 1(b) and 1(c) for an example. The multiplication and

division operators defined by equations (7) and (8) provide a

notation for parallel shifts, as highlighted by Fig. 1(a).

The DAU conditions of ITA have a straightforward corre-

spondence to our cut definition. We call the ITA conditions

shape cuts. We employ the concept of context to avoid

redundancy in the definition of sub-conditions specific to a

given DAU face by appending the sub-conditions to the

corresponding shape cut, surrounded by parentheses; such a

cut is a face cut. Similarly, sub-conditions specific to a given

edge are appended to a corresponding face cut, again

surrounded by parentheses, and are called edge cuts. In some

cases, the DAU choices of ITA necessitate the combination of

cuts via logical conjunction or disjunction. Following common

practice, we chose the symbol ‘&’ for conjunction and ‘|’ for

disjunction. To give an example, the cut expression

x0ðz4 & z0ð�y0ÞÞ ð9Þ

appears for space group P42c (No. 112), using the geometric

cut notation of Table 1. Here x0 is a shape cut. The expression

in the outer pair of parentheses is a face cut, composed of the

logical conjunction z4 & z0. The expression in the inner pair of

parentheses (�y0) is an edge cut. As an example, a full step-

by-step interpretation of equation (9) is shown in Appendix A.

The symbols in Table 1 include seven main flocks of parallel

planes: xd, yd, zd, pd, md, hd, kd. The position of a cut plane

relative to the origin of the coordinate system is indicated with

the index d = 1/c, with c as defined in equations (3) and (4),

except if c = 0 or c = 3/4. Fig. 1 illustrates the geometric

interpretation of the main geometric cut symbols. A large

majority of the cut planes needed in the DAU definitions

presented below can be labelled intuitively with these symbols.

The remaining symbols in Table 1 were introduced primarily

to condense the DAU definitions in Table 2 below.

research papers

270 Ralf W. Grosse-Kunstleve et al. � Exact direct-space asymmetric units Acta Cryst. (2011). A67, 269–275

Table 1
Definition of geometric cut symbols used in Table 2.

See Fig. 1 for geometric illustrations of the main symbols.

Symbol h, k, l c Expression

x1 (�1, 0, 0) 1
x0 �x1�0
x2 x1/2
x3 x1/3
x4 x1/4
x8 x1/8
x34 x1�3/4
y1 (0, �1, 0) 1
y0 �y1�0
y2 y1/2
y3 y1/3
y4 y1/4
y8 y1/8
z1 (0, 0, �1) 1
z0 �z1�0
z2 z1/2
z3 z1/3
z4 z1/4
z6 z1/6
z8 z1/8
z12 z1/12
p1 (�1, 1, 0) 1
p0 �p1�0
p2 p1/2
p3 p1/3
p4 p1/4
m1 (�1, �1, 0) 1
m0 �m1�0
m2 m1/2
m4 m1/4
h1 (1, �2, 0) 1
h0 �h1�0
k1 (�2, 1, 0) 1
k0 �k1�0
xz1 (1, 0, 1) 1
xz0 �xz1�0
xz2 xz1/2
xz4 xz1/4
zx1 (�1, 0, 1) 1
zx0 �zx1�0
zx2 zx1/2
yz1 (0, 1, 1) 1
yz0 �yz1�0
yz2 yz1/2
yz4 yz1/4
zy1 (0, �1, 1) 1
zy0 �zy1�0
zy2 zy1/2
zy4 zy1/4
dy8 (1, �1, 1) 1/8
tx0 (�2, 1, 1) 0
ty0 (�1, 2, �1) 0
tz2 (�2, 1, �1) 1/2

Primary geometric cut symbols are defined directly by a normal and constant. Secondary
geometric cut symbols are defined by a cut expression based on a primary symbol. Note
that the normal vector of all cuts with a ‘0’ subscript in the geometric cut symbol is the
opposite of the normal vector of the other cut planes in the same flock. This convention
greatly reduces the number of minus signs in the exact DAU definitions of Table 2.
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3. Methods

3.1. Change-of-basis transformation law

In many situations it is essential to be able to transform

variables from one basis system to another. Giacovazzo (1992)

includes a table of transformation laws (Table 2.E.1) for

commonly used variables, for example fractional coordinates,

Miller indices or anisotropic displacement parameters. This

list can be extended by a transformation law for DAU defi-

nitions based on equations (1) and (2). Borrowing the

conventions of ITA, let (P; p) be a change-of-basis matrix with

a (3 � 3) rotation part P and R
3 translation vector p, and let

(Q; q) be its inverse. A column vector of fractional coordi-

nates x ¼ ðx; y; zÞT in a first R3 basis system is transformed to

coordinates x0 in a second basis system via

x0 ¼ Qxþ q: ð10Þ
We also define the row vector n = (h; k; l) in the first basis

system. The corresponding n0 in the second basis system is

given by

n0 ¼ nP: ð11Þ
The determination of the scalar constant c0 is based on the

rationale that

n0 � x0 þ c0 ¼ 0 ð12Þ
must hold for all solutions x of

n � xþ c ¼ 0: ð13Þ
Setting n0 � x0 þ c0 ¼ n � xþ c, substituting equations (10) and

(11), and solving for c0 yields the second part of the transfor-

mation law for DAU cuts:

c0 ¼ c� n0 � q: ð14Þ

3.2. Determination of vertices

Given a list of shape cuts, the DAU vertices can be

computed by solving equation (13) for all unique ordered

triplets of cuts. Let n1; n2 and n3 be the cut normal vectors of

such a triplet. The three cut planes intersect in a point m if the

determinant of

N ¼
h1 k1 l1
h2 k2 l2
h3 k3 l3

0
@

1
A ð15Þ

is not zero. Under this condition the point m is found by solving

N � mþ ðc1; c2; c3ÞT = 0:

m ¼ �N�1

c1

c2

c3

0
@

1
A: ð16Þ

m is a vertex of the DAU if all inequalities given by the shape

cuts are also simultaneously true. If more than three planes

intersect in a given vertex it is obtained multiple times and

duplicates are discarded. We note that the largest number of

shape cuts using the ITA definitions is nine, for space group

Ia3d (No. 230). In this case the determinant of N is evaluated

84 times, equation (16) is evaluated 56 times and the final

number of unique vertices is nine, in accordance with ITA.

3.3. Validation of exact conditions

The exact conditions shown in Table 2 are validated with a

sampling procedure to establish that the DAU is neither too

small nor too large. The procedure is intentionally unsophis-

ticated to maximize robustness. It is intrinsically highly inef-

ficient, which is compounded by the use of a dynamically

typed scripting language for its implementation. Nonetheless,
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Figure 1
Illustrations of selected cut planes with geometric cut symbols xd, pd, md,
hd and kd. The (x, y, 0) plane of a unit cell is outlined with thin lines. The
unit-cell origin is labelled with 0, the basis vectors with a and b. The traces
of cut planes are indicated with thick lines; small attached triangles
indicate the ‘inside’ direction. (a) Geometric interpretation of equations
(7) and (8) using the xd flock as an example. (b) Cut planes in the pd and
md flocks as they appear in a tetragonal system. The p2 and �p2 cut planes
illustrate the geometric interpretation of equation (6). (c) Cut planes in
the pd, md, hd and kd flocks as they appear in a trigonal or hexagonal
system.
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Table 2
Exact DAU definitions for the 230 space groups, based on the geometric
cut definitions of Table 1.

Following International Tables, Vol. B (Shmueli, 2001) Table A1.4.2.7, the first
column, n:c, lists the space-group numbers and setting codes separated by a
colon. For monoclinic space groups, the setting code ‘b’ indicates ‘unique axis
b’; ‘b1’ indicates ‘unique axis b, cell choice 1’. For orthorhombic, tetragonal
and cubic space groups, ‘2’ indicates ‘origin choice 2’. For rhombohedral space
groups, ‘h’ indicates ‘hexagonal axes’. The conditions for space groups 78, 95,
145, 154, 170, 172, 181 and 213 are defined by change-of-basis operations
transforming the conditions of the enantiomorphic mates.

n:c Cuts

1 x0; +x1; y0; +y1; z0; +z1

2 x0(y0(z2) & y2(z2)); x2(y0(z2) & y2(z2)); y0; +y1; z0; +z1

3:b x0; +x1; y0; +y1; z0(x2); z2(x2)
4:b x0; +x1; y0; +y1; z0(x0(+y2) & x2(+y2)); z2(x0(+y2) & x2(+y2))
5:b1 x0(z2); x2(z2); y0; +y2; z0; +z1

6:b x0; +x1; y0; y2; z0; +z1

7:b1 x0; +x1; y0(+z2); y2(+z2); z0; +z1

8:b1 x0; +x1; y0; y4(+x2); z0; +z1

9:b1 x0; +x1; y0(+z2); y4(+z2); z0; +z1

10:b x0(z2); x2(z2); y0; y2; z0; +z1

11:b x0; +x1; y0(z0(x2) & z2(x2)); y4; z0; +z1

12:b1 x0(z2); x2(z2); y0; y4(x4(z2)); z0; +z1

13:b1 x0(z0(y2) & z4); x2(z0(y2) & z4); y0; +y1; z0; +z2

14:b1 x0(y0(z2)); +x1; y0(x2(z2)); y4(+z2); z0; +z1

15:b1 x0(z4); x2(z4); y0; +y2; z0(y4(x4)); z2(-y4(x4))
16 x0(z2); x2(z2); y0(z2); y2(z2); z0; +z1

17 x0(�z4 & z1�3/4); x2(�z4 & z1�3/4); y0(z2); y2(z2); z0; +z1

18 x0; x2(�y0); y0; +y2; z0; +z1

19 x0; +x2; y0(�z2); y2(z2); z0(+y2); +z1

20 x0(z4); x2(�z4); y0; y2(�z0); z0; +z2

21 x0(z2); x4(y4); y0(z2); y2(z2); z0; +z1

22 x0(z2); x4(�z4 & z1�3/4); y0(z2); y4(�z4 & z1�3/4); z0; +z1

23 x0; x2(�y0); y0; y2(�z0); z0; z2(�x0)
24 x0(y4); x2(y4); y0(z4); y2(z4); z0(x4); z2(x4)
25 x0; x2; y0; y2; z0; +z1

26 x0; x2; y0(+z2); y2(+z2); z0; +z1

27 x0(+z2); x2(+z2); y0(+z2); y2(+z2); z0; +z1

28 x0(y2); x4; y0; +y1; z0; +z1

29 x0(+z2); x4(+z2); y0; +y1; z0; +z1

30 x0(y2); x2(y2); y0; +y1; z0; +z2

31 x0; x2; y0(+z2); y2(+z2); z0; +z1

32 x0; x2(�y0); y0; +y2; z0; +z1

33 x0; +x2; y0(+z2); y2(+z2); z0; +z1

34 x0; x2(�y0); y0; +y2; z0; +z1

35 x0; x4(y4); y0; y2; z0; +z1

36 x0; x2; y0; +y2; z0; +z2

37 x0(+z2); x4(y4); y0(+z2); y2(+z2); z0; +z1

38 x0; x2; y0; y2; z0; +z2

39 x0(+z2); x2(+z2); y0(+z2); y4; z0; +z1

40 x0(+z2); x4; y0(+z2); y2(+z2); z0; +z1

41 x0; x2(�y0); y0; +y2; z0; +z2

42 x0; x4(+z2); y0; y4(+z2); z0; +z1

43 x0; x4(-y0(+z2)); y0; +y4; z0; +z1

44 x0; x2; y0; y2; z0; +z2

45 x0; x2(�y0); y0; +y2; z0; +z2

46 x0(y2); x4; y0; +y1; z0; +z2

47 x0; x2; y0; y2; z0; z2

48:2 x0(�y0(z2)); x4(�z4 & z1�3/4); �y4(�z4 & z1�3/4);
y4(�z4 & z1�3/4); z0; +z1

49 x0(z4); x2(z4); y0(z4); y2(z4); z0; z2

50:2 x0(�y2); x4(�y4 & y1�3/4); y0; +y1; z0(�y4 & y1�3/4);
z2(�y4 & y1�3/4)

51 x0(z2); x4; y0; y2; z0; +z1

52 x0; +x1; y0(�x4 & x34); y4(z4); z0(�x2); z2(�x2)
53 x0; x2; y0; +y1; z0(y2); z4(x4)
54 x0(�z4); x2(z4); y0(�x4); y2(�x4); z0; +z2

55 x0; x2(�y0); y0; +y2; z0; z2

56 x0(y2(�z0)); x4(�y4 & y1�3/4); y0; +y1; z0; +z2

57 x0(�y2); x2(�y2); y0; +y1; z0(�y4 & y1�3/4); z4

58 x0; x2(�y0); y0; +y2; z0; z2

Table 2 (continued)

n:c Cuts

59:2 x0(�y0(z2)); x4; �y4; y4; z0; +z1

60 x0(z4); x2(�z4); y0; y2(�x0(�z0)); z0; +z2

61 x0; x2(�y0(�z0)); y0; +y2; z0; +z2

62 x0; x2(�y0(�z0)); y0(+z2); y4; z0; +z1

63 x0; x2; y0; +y2; z0(y4(x4)); z4

64 x0; x4(z4); y0; +y2; z0(y4); z2(+y4)
65 x0; x4(y4); y0; y2; z0; z2

66 x0(z4); x4(y4); y0(z4); y2(z4); z0; z2

67 x0; x2; y0(x4); y4; z0(x4); z2(x4)
68:2 x0(z4); x2(z4); y0(x4); y4(z4); z0(+x2 & y4(x4)); +z2

69 x0; x4(z4); y0; y4(z4); z0; z2

70:2 x0(�y0(z2)); x8(�z8 & z1�5/8); �y8(�z1�3/8 & z1�7/8);
y8(�z8 & z1�5/8); z0; +z1

71 x0; x4(y4(z4)); y0; y2; z0; z2

72 x0(z4); x4(y4(z4)); y0(z4); y2(z4); z0; z2

73 x0(y4); x4(z4(y4)); y0(z4); y2(�z4); z0; +z2

74 x0; x4(�z4 & z1�3/4); y0(z2); y4; z0; +z1

75 x0(�y0); x2; y0; y2(�x2); z0; +z1

76 x0(+z4); x2(+z4); y0(+z1�3/4); y2(+z1�3/4); z0; +z1

77 x0(+z2); x2(+z2); y0(+z2); y2(+z2); z0; +z1

78 76 ! a, b, �c + 1
79 x0(�y0); x2; y0; y2(�x2); z0; +z2

80 x0(y2); x2(y2); y0; +y1; z0; +z4

81 x0(�y0(z2)); x2; y0; y2(�x2(z2)); z0; +z1

82 x0(z0(�y0)); x2(�y0(z4)); y0; y2(�x0(z4)); z0; z2(�y0)
83 x0(�y0); x2; y0; y2(�x2); z0; z2

84 x0(�y0(z4)); x2; y0; y2(�x2(z4)); z0; z2

85:2 �x4(��y4); x4(z0(��y4) & z2(��y4)); �y4; y4(�x4);
z0(�y0(�x0)); z2(�y0(�x0))

86:2 �x4(��y4(z4)); x4(z0(��y4) & z2(+��y4)); �y4; y4(�x4(z4));
z0(�y0(�x0)); z2(�y0(�x0))

87 x0(�y0); x2; y0; y2(�x2); z0; z4(y4(x4) & x2(�y0))
88:2 x0; x4; y0(�x0(z2) | �x4(+z4)); y4(�x0(�z8 & z1�5/8)); z0; +z1

89 x0(p0); x2; y0; y2(�x2); z0(p0); z2(p0)
90 x0; x2(�y0); y0; y2(�x0); z0(p0); z2(p0)
91 x0(z8(�y0)); +x1; y0; +y1; z0(x2); z8(m1)
92 x0; +x1; y0; +y1; z0(p0); z8(�y2)
93 x0(y2); x2(y2); y0; +y1; z0(y2); z4(�p0 & m1)
94 x0(�y0); x2(z2(�y2)); y0(z2(�x0)); +y2; z0(p0); z2(p0)
95 91 ! �a + 1, b, c
96 x0; +x1; y0; +y1; z0(p0); z8(�x2)
97 x0(�y0); x2; y0; y2(�x2); z0(p0); z4(m2)
98 x0(y2); x2(y2); y0; +y1; z0(m1 & �p0); z8(�y4 & y1�3/4)
99 x0; y2; z0; +z1; �p0

100 x0(�y0); y0; z0; +z1; m2

101 x0(+z2); y2(+z2); z0; +z1; �p0

102 x0(+z2); y2(+z2); z0; +z1; �p0

103 x0(�y0); x2; y0; y2(�x2); z0; +z2

104 x0(�y0); x2; y0; y2(�x2); z0; +z2

105 x0; x2; y0; y2; z0; +z2

106 x0(�y0); x2; y0; +y2; z0; +z2

107 x0; y2; z0; +z2; �p0

108 x0(�y0); y0; z0; +z2; m2

109 x0; x2; y0; y2; z0; +z4

110 x0(�y0); x2; y0; +y2; z0; +z4

111 x0(z2); y2(z2); z0; +z1; �p0

112 x0(z4 & z0(�y0)); x2(z4); y0(z4); y2(z4 & z0(�x2)); z0; +z2

113 x0(�y0(z2)); y0; z0; +z1; m2

114 x0(�y0); x2; y0; y2(�x2(�z0)); z0; +z2

115 x0; x2; y0; y2; z0(p0); z2(p0)
116 x0(y2); x2(y2 & z0(�y2)); y0; +y1; z0(y2 & y0(�x0)); z4(m1 & �p0)
117 x0(z0(�y0) & z2(�y0)); x2(�y0); y0; +y2; z0(m2); z2(m2)
118 x0(y2); x2(y2); y0; +y1; z0(y2(�x2) & x0(�y0)); z4(�p2 & �m2)
119 x0; x2; y0; y2; z0(p0); z4(m2)
120 x0(z0(�y0)); x2(�y0); y0; +y2; z0(m2); z4(p0)
121 x0; y2(�x0(z4)); z0; z2(�x0); �p0

122 x0(y2 & z0(�y0)); x2(y2); y0; +y1; z0(y2(�x2)); z8(�y4 & y1�3/4)
123 x0; y2; z0; z2; �p0

124 x0(�y0); x2; y0; y2(�x2); z0; z4(p0)
125:2 �x4(��y4); �y4; z0(p0); z2(p0); �m0

126:2 �x4(��y4); x4; �y4; y4(�x4); z0(�y0(�x0) & x4(��y4)); z4(p0)
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given current computing hardware, the entire Table 2 can be

re-validated in less than 2 min.

The first part of the validation procedure samples the DAU

conditions using two grids over the unit cell, given a user-

defined number of sampling points N per unit in fractional

coordinate space. To simplify this presentation, without loss of

generality, we assume that N is identical in all three dimen-

sions. N is always chosen to be even. The first ugrid covers the

unit cell from 0 to N � 1, corresponding to the range [0.0, 1.0[

in fractional coordinate space. All ugrid points are initialized

with zero. The second rgrid covers space more redundantly

from �N/2 to N, corresponding to the range [�0.5, 1.0]. The

vertex determination of x3.2 is used to assure that the DAU to

be validated falls entirely into the rgrid. For each rgrid point,

the inequalities defined by the DAU cuts are evaluated. A

value of one is assigned if the point is inside the DAU (all

inequalities are true) and zero otherwise. If the point is inside

the DAU, the crystallographic unit translations, in the form of

the modulus operation, are applied to the grid indices of the

point to determine the symmetry-equivalent grid point in the

ugrid, which is then also set to one. If it was set already, an

error message reports that the point is redundant.

At the end of the first part of the validation procedure the

ugrid has a value of one for all grid points inside the DAU and

zero for all points outside; note that the ugrid has discon-
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Table 2 (continued)

n:c Cuts

127 x0(�y0); y0; z0; z2; m2

128 x0(�y0); x2; y0; y2(�x2); z0; z4(m2)
129:2 �x4; y4; z0(�m0); z2(�m0); �p0

130:2 �x4(��y4); x4(z0(��y4)); �y4; y4(�x4); z0(�y0(�x0)); z4(�m0)
131 x0; x2; y0; y2; z0; z4(p0)
132 x0(z4); y2(z4); z0; z2; �p0

133:2 �x4; x4(�z0 | ��y4); �y4; +y4; z0(�y0(�x0)); z4(p0)
134:2 �x4(z4); �y4(z4); z0(p0); z2(p0); �m0

135 x0(z4(�y0)); x2(�y0); y0; +y2; z0; z4(m2)
136 x0(z4); y2(z4(�x0)); z0; z2; �p0

137:2 �x4; x4; �y4; y4; z0(�y0(�x0)); z4(�m0)
138:2 �x4; y4(��x4(z4)); z0(�m0); z2(�m0 & �x4(�y4)); �p0

139 x0; y2; z0; z4(m2); �p0

140 x0(�y0); y0; z0; z4(p0); m2

141:2 x0; x2; �y4; y4; z0(�y0); z8(�p4)
142:2 x0(z8(��y4) & z0(�y0)); x2(��y4); �y4; +y4; z0(x4); z8(m4)
143 x0(�y0); y0; z0; +z1; k1; m1(�h1 | �k1); h1

144 x0; +x1; y0; +y1; z0; +z3

145 144 ! b, a, c
146:h x0(�y0); y0; z0; +z3; k1; m1(�h1 | �k1); h1

147 x0(�y0); y0; z0(p0(�y0)); z2(p0(�y0)); k1; m1(�h1 | �k1); h1

148:h x0(�y0); y0; z0(p0(�y0)); z6(�h0(x3) | �k0(�y0 | �m1)); k1;
m1(�h1 | �k1); h1

149 x0(�y0); y0; z0(�h0 | �k0); z2(�h0 | �k0); k1; m1(�h1 | �k1); h1

150 x0(�y0); y0; z0(p0); z2(p0); k1; m1(�h1 | �k1); h1

151 x0; +x1; y0; +y1; z0(�h0 | �h1); z6(�k0 | �k1)
152 x0; +x1; y0; +y1; z0(�p0); z6(�p0)
153 x0; +x1; y0; +y1; z0(�h0 | �h1); z6(x0(�y0) & m1)
154 152 ! b, a, c
155:h x0(�y0); y0; z0(p0); z6(x3 & �p3); k1; m1(�h1 | �k1); h1

156 z0; +z1; h0; m1; k0

157 y0; z0; +z1; k1; m1(y3); p0

158 x0(�y0); y0; z0; +z2; k1; m1(�h1 | �k1); h1

159 x0(�y0); y0; z0; +z2; k1; m1(�h1 | �k1); h1

160:h z0; +z3; h0; m1; k0

161:h x0(�y0); y0; z0; +z6; k1; m1(�h1 | �k1); h1

162 y0; z0(�h0); z2(�h0); k1; m1(y3); p0

163 x0(�y0); y0; z0(p0(�y0)); z4(�h0 | �k0); k1; m1(�h1 | �k1); h1

164 y0(z2); z0; +z1; k1; �h0

165 x0(�y0); y0; z0(p0(�y0)); z4(p0); k1; m1(�h1 | �k1); h1

166:h z0(p0); z6(x3); h0; m1; k0

167:h x0(�y0); y0; z0(p0(�y0)); z12(y3 & p3); k1; m1(�h1 | �k1); h1

168 y0; z0; +z1; k1; m1(y3); p0(�y0)
169 x0; +x1; y0; +y1; z0; +z6

170 169 ! b, a, c
171 x1(y2); y0(x2); z0; +z3; p0(y2)
172 171 ! �b + 1, �a + 1, c
173 x0(�y0); y0; z0; +z2; k1; m1(�h1 | �k1); h1

174 x0(�y0); y0; z0; z2; k1; m1(�h1 | �k1); h1

175 y0; z0; z2; k1; m1(y3); p0(�y0)
176 x0(�y0); y0; z0(p0(�y0)); z4; k1; m1(�h1 | �k1); h1

177 y0; z0(�h0); z2(�h0); k1; m1(y3); p0(�y0)
178 x0; +x1; y0; +y1; z0(p0); z12(�h0 | �h1)
179 x0; +x1; y0; +y1; z0(p0); z12(m1 & x0(�y0))
180 x1(y2); y0(x2); z0(k1); z6(�h0); p0(y2)
181 180 ! b + 1, �a � b, �c + 1/6
182 x0(�y0); y0; z0(p0); z4(�h0 | �k0); k1; m1(�h1 | �k1); h1

183 y0; z0; +z1; k1; �h0

184 y0; z0; +z2; k1; m1(y3); p0(�y0)
185 y0; z0; +z2; k1; m1(y3); p0

186 y0(+z2); z0; +z1; k1; �h0

187 z0; z2; h0; m1; k0

188 x0(�y0); y0; z0(�h0 | �k0); z4; k1; m1(�h1 | �k1); h1

189 y0; z0; z2; k1; m1(y3); p0

190 x0(�y0); y0; z0(p0); z4; k1; m1(�h1 | �k1); h1

191 y0; z0; z2; k1; �h0

192 y0; z0; z4(�h0); k1; m1(y3); p0(�y0)
193 y0; z0(�h0); z4; k1; m1(y3); p0

194 z0(p0); z4; h0; m1; k0

195 z0(y2 & x2); m1(�y2); zy0(�zx0); zx0

196 p0(m2); �xz2(�zy0); zx2(yz0); �yz0; zy0

197 z0(x2); p0(�zy0); +m1; zy0

Table 2 (continued)

n:c Cuts

198 x0(�y0); x2; y2(+z0 & x2(+z2)); zx2(m2); zx0(p0); �yz0; zy0

199 x2(�y4); y2(�z4); z0(x4); zx0(�zy0(+x2)); zy0

200 x2; y2; z0; zx0(�zy0); zy0

201:2 �z4(x4); p0(�zy0(�x0)); m2(�zy0(x2)); zy0

202 z0; p0(x4); �xz2(�zy0); zy0

203:2 p0(�zy0(�x0)); m4(�zy0 | �yz4(�z4)); zy0; yz4

204 x2; z0; p0(�zy0(x4)); zy0

205 x2(�z0(�zy0)); y2(�zy0); z0; zx0(�zy0); zy0

206 z0(x4); zx0(�zy0); �xz2; zy0; �yz2(�zx0)
207 z0(x2); p0; m1(�p0); zy0(x2)
208 zx0(�zy0); �xz0(yz0); zx2(y4); �xz2(y4); zy0; �yz0; zy2(�x4);

�yz2(�x4)
209 p0(z0); m2(z0); zy0; �yz0(�zy0)
210 y8(��xz4); z8(m4); p0(�zx0); m2(��xz2); �yz0(z0); zx0; �xz2

211 z0(p0); zx0(�zy0); �xz2(y4); zy0; �yz2(�x4)
212 zx2; �yz0(�zx2); �yz2(tx0); �tx0(x8); ty0(y8); tz2(�x1�3/8)
213 212 ! �b, c + 1/2, a � 1/2
214 x8(�yz4); y8(�xz4); �y8(��zx1/4); �zx0(zy0); �zy0; �zy4(�y0);

dy8(�p4)
215 z0(x2); p0; m1; zy0

216 p0; m2; zy0; �yz0

217 x2(�z0(y4)); z0; p0; zy0

218 x2(�z0(y4)); y2(�z0(x4)); z0; zx0(�zy0); zy0

219 p0; m2(�p0(z0)); zy0; �yz0(�p0 | �zy0(x4))
220 �x4(�z0(�y1�3/8)); x2; �y4(�x2(�z8)); y2(�z4); z0; zx0(�zy0); zy0

221 x2; z0; p0; zy0

222:2 x34(z4(y2) | �zy0); �z4; p0(�zy0(z2)); zy0

223 z0; zx0(�zy0); �xz2(y4); zy0; �yz2(x4)
224:2 p0; �xz1(y2); zx2(y2); ��yz2; zy0

225 z0; p0; m2; zy0

226 z0; p0; m2(�p0); zy0(x4)
227:2 �y0(�xz0); p0; m4; yz4; zy0

228:2 �y0(zx1/4); p0(�zy0); m4; yz4(�zy0(x8)); zy0

229 z0; p0; �xz2(y4); zy0

230 x8(�zy4 & �yz4); �x8(y0(�z4)); y8(��xz4); �y8(�zx1/4); z4(y0);
�zx0; �xz0(�z0); �zy0(zx0); �yz0
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nected regions of grid points with value one if the DAU has

points with negative coordinates. The second part of the

validation procedure visits each point in the ugrid. The

symmetry operations of the space group, taking the crystal-

lographic unit translations and any centring translations into

account, are applied to enumerate all equivalent points in the

ugrid. If a point is flagged as inside the DAU, all equivalent

points must be flagged as outside; otherwise an error message

reports that the DAU has redundant points. For each point

flagged as outside the DAU, one equivalent point must be

flagged as inside; otherwise an error message reports that the

point has no equivalent in the DAU.

If no error messages are shown, the validation procedure

establishes conclusively that the DAU conditions have

complete coverage and that the covered space is non-

redundant under symmetry. The only critical parameter is the

number N of sampling points per unit in fractional space.

Based on an inspection of the locations of the symmetry

elements, we found that N = 24 is sufficiently large for all space

groups. However, as a final validation we also ran the proce-

dure for all space groups with N = 72, which takes about

45 min on a current 48-core system.

3.4. Visually assisted determination of exact conditions

The exact DAU conditions shown in Table 2 were deter-

mined manually. Progress was greatly accelerated by visual

tools developed specifically for this purpose. A full presenta-

tion of these tools is beyond the scope of this paper [Grosse-

Kunstleve et al. (2003) includes pointers to the openly avail-

able implementation]. The main idea is to colour-code pairs of

redundant points on the DAU surface as they are detected in

the sampling procedure described in x3.3; for example, the first

point is coloured dark blue and the equivalent redundant

point light blue. A very simple colour-selection procedure

using only a small palette of colours was found to be sufficient

in practice. An example is shown in Fig. 2. We added the face-

or edge-specific cuts one at a time, updating the visualization

after each step. In this way we could determine exact DAU

definitions in a matter of a few minutes for most space groups.

4. Results

Table 2 defines exact DAUs for 230 reference settings, chosen

to be compatible with the reference settings used in the IUCr

symCIF dictionary (Brown, 2005). Using the change-of-basis

transformation law of x3.1 in combination with the algorithms

of Grosse-Kunstleve (1999), it is possible to automatically

obtain an exact DAU for any setting.

Koch & Fischer (1974) and ITA x2.8 explain that the shape

for a DAU is not uniquely determined and that the best choice

is application specific. Similarly, the face- and edge-specific

sub-conditions required for an exact DAU are also not

uniquely determined. The choices we made for Table 2 aim at

obtaining compact sets of sub-conditions, which is also

expected to minimize the runtime needed for evaluating if a

given point is inside the DAU. For the cubic space groups, we

attempted to adopt the sub-conditions of Koch & Fischer

(1974) but it turned out to be challenging in some cases. In six

cases (space-group numbers 195, 198, 210, 220, 227, 228) the

ITA shape conditions are incompatible with those of Koch &

Fischer (1974). In some other cases their sub-conditions lead

to complicated cut expressions. Using the approach of x3.4 it

was only a small effort to determine simpler alternatives for

Table 2.

For eight enantiomorphic space groups (the numbers are

listed in the caption of Table 2) the exact DAU is defined

through a change-of-basis transformation of the DAU of the

enantiomorphic mate. The three remaining enantiomorphic

pairs of space groups cannot be handled in this way because

the ITA shape DAU conditions are pairwise incompatible. The

change-of-basis matrices in Table 2 are expressed using the

notation as defined in Zwart et al. (2008).

5. Conclusion

Table 2 is the first complete and uniform definition of exact

DAUs for all 230 space-group types. The table is concise owing

to the geometric cut notation introduced in this work. At the

same time, the cut expressions lend themselves to automatic

processing, with results as demonstrated already in Grosse-

Kunstleve et al. (2003). In the meantime we have found other

practical uses in the context of the PHENIX suite (Adams et

al., 2010), such as the search for interactions between pairs of

atoms (Grosse-Kunstleve et al., 2004) and a bulk-solvent-mask

determination procedure.

In this work we have used a manual approach for the

determination of the face- and edge-specific sub-conditions

required for exact DAUs. We believe an algorithmic approach

is possible but will require significantly more initial effort than

our manual approach. The cut plane formalism presented here

could serve as a basis for future automation work.
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Figure 2
Visualization of redundant pairs of points at the surface of the DAU of
space group P42 (No. 77). Colour-coded pairs of redundant points on the
DAU surface are shown as they are detected in the sampling procedure
described in x3.3. For example, the first point is coloured dark blue and
the equivalent redundant point light blue. With the help of the colours it
is immediately obvious how the redundant points are related and where
to place the missing face cuts to obtain the exact DAU.
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APPENDIX A
Example step-by-step interpretation of a geometric cut
expression

Equation (9) in x2, which appears for space group P42c (No.

112) in Table 2, was shown as an example of a geometric cut

expression:

x0ðz4 & z0ð�y0ÞÞ: ð17Þ
The shape cut in this example is x0. According to Table 1 and

employing equation (7), this geometric cut symbol expands to

cutðð1; 0; 0Þ; 0Þ. Use of equation (1) yields 1xþ 0yþ 0z � 0,

which simplifies to x � 0. The outer pair of parentheses

encloses a face cut expression that applies only if x ¼ 0 [see

text following equation (8) in x2]. The first part of the face cut

expression, z4, translates to z � 1=4 [lookup in Table 1, use of

equations (8) and (1), and simplification]. The second part of

the face cut expression, z0, translates to z � 0. The logical

conjunction symbol ‘&’ (defined in x2) indicates that a point in

the plane is in the DAU only if both z � 0 and z � 1=4, with

and in the Boolean sense. The inner pair of parentheses

encloses an edge cut expression specific to the (0, y, 0) line

defined by the conditions x ¼ 0 and z ¼ 0. Lookup in Table 1,

use of equations (7), (5) and (1), and simplification lead to the

sub-condition y � 0. In combination with the y0 shape cut of

space group P42c, this means that only the point (0, 0, 0) on

the (0, y, 0) line is in the DAU.

Graphical illustrations of the DAU conditions are available

at http://cci.lbl.gov/asu_gallery/. An expanded DAU notation

that is more similar to the notation of ITA is shown along with

the graphical illustrations.
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